
Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 1

Chapter – 5

Computer Arithmetic

Integer Representation: (Fixed-point representation):

An eight bit word can be represented the numbers from zero to 255 including

00000000 = 0

00000001 = 1

- - - - - - -

11111111 = 255

In general if an n-bit sequence of binary digits an-1, an-2 …..a1, a0; is interpreted as unsigned

integer A.

A = 




1

0

n

i

2
i
ai

Sign magnitude representation:

There are several alternative convention used to represent negative as well as positive integers,

all of which involves treating the most significant (left most) bit in the word as sign bit. If the

sign bit is 0, the number is +ve and if the sign bit is 1, the number is –ve. In n bit word the right

most n-1 bit hold the magnitude of integer.

For an example,

+18 = 00010010

- 18 = 10010010 (sign magnitude)

The general case can be expressed as follows:

A = 




2

0

n

i

2
i
ai if an-1 = 0

 = -




2

0

n

i

2
i
ai if an-1 =1

A = -2
n-1

an-1 + 




2

0

n

i

2
i
ai (Both for +ve and –ve)

There are several drawbacks to sign-magnitude representation. One is that addition or subtraction

requires consideration of both signs of number and their relative magnitude to carry out the

required operation. Another drawback is that there are two representation of zero. For an

example:

+010 = 00000000

-010 = 10000000 this is inconvenient.

2’s complement representation:

Like sign magnitude representation, 2’s complement representation uses the most significant bit

as sign bit making it easy to test whether the integer is negative or positive. It differs from the

use of sign magnitude representation in the way that the other bits are interpreted. For negation,

take the Boolean complement (1’s complement) of each bit of corresponding positive number,

and then add one to the resulting bit pattern viewed as unsigned integer. Consider n bit integer A

in 2’s complement representation. If A is +ve then the sign bit an-1 is zero. The remaining bits

represent the magnitude of the number.

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 2

A = 




2

0

n

i

2
i
ai for A ≥ 0

The number zero is identified as +ve and therefore has zero sign bit and magnitude of all 0’s. We

can see that the range of +ve integer that may be represented is from 0 (all the magnitude bits

are zero) through 2
n-1

-1 (all of the magnitude bits are 1).

Now for –ve number integer A, the sign bit an-1 is 1. The range of –ve integer that can be

represented is from -1 to -2
n-1

2’s complement, A = -2
n-1

an-1 + 




2

0

n

i

2
i
ai

Defines the twos complement of representation of both positive and negative number.

For an example:

+18 = 00010010

1’s complement = 11101101

2’s complement = 11101110 = -18

5.1 Addition Algorithm

5.2 Subtraction Algorithm

1001 = -7 1100 = -4 0011 = 3

0101 = +5 0100 = +4 0100= 4

1110 =-2 10000 = 0 0111= 7
(a) (-7)+(+5) (b) (-4)+(4) (c) (+3)+(+4)

1100 = -4 0101 =5 1001 = -7

1111 = -1 0100 =4 1010 = -6

11011 = -5 1001=overflow 10011 = overflow
(d) (-4)+(-1) (e) (+5)+(+4) (f) (-7)+(-6)

The first four examples illustrate successful operation if the result of the operation is +ve then we

get +ve number in ordinary binary notation. If the result of the operation is –ve we get negative

number in twos complement form. Note that in some instants there is carry bit beyond the end of

what which is ignored. On any addition the result may larger then can be held in word size being

use. This condition is called over flow. When overflow occur ALU must signal this fact so that

no attempt is made to use the result. To detect overflow the following rule observed. If two

numbers are added, and they are both +ve or both –ve; then overflow occurs if and only if the

result has the opposite sign.

The data path and hardware elements needed to accomplish addition and subtraction is shown in

figure below. The central element is binary adder, which is presented two numbers for addition

and produces a sum and an overflow indication. The binary adder treats the two numbers as

unsigned integers. For addition, the two numbers are presented to the adder from two registers A

and B. The result may be stored in one of these registers or in the third. The overflow indication

is stored in a 1-bit overflow flag V (where 1 = overflow and 0 = no overflow). For subtraction,

the subtrahend (B register) is passed through a 2’s complement unit so that its 2’s complement is

presented to the adder (a – b = a + (-b)).

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 3

B Register A Register

Complement

Switch

n bit Adder

V CSZ

Check for Zero

XOR
B7

B8

B7

n bit/

Fig: Block diagram of hardware for addition / subtraction

5.3 Multiplication Algorithm

The multiplier and multiplicand bits are loaded into two registers Q and M. A third register A is

initially set to zero. C is the 1-bit register which holds the carry bit resulting from addition. Now,

the control logic reads the bits of the multiplier one at a time. If Q0 is 1, the multiplicand is added

to the register A and is stored back in register A with C bit used for carry. Then all the bits of

CAQ are shifted to the right 1 bit so that C bit goes to An-1, A0 goes to Qn-1 and Q0 is lost. If Q0 is

0, no addition is performed just do the shift. The process is repeated for each bit of the original

multiplier. The resulting 2n bit product is contained in the QA register.

Fig: Block diagram of multiplication

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 4

There are three types of operation for multiplication.

 It should be determined whether a multiplier bit is 1 or 0 so that it can designate the

partial product. If the multiplier bit is 0, the partial product is zero; if the multiplier bit is

1, the multiplicand is partial product.

 It should shift partial product.

 It should add partial product.

Unsigned Binary Multiplication

1011 Multiplicand 11

 X 1101 Multiplier 13

1011

 0000 Partial Product

 1011

 + 1011

 10001111 Product (143)

Start

M ß Multiplicand, Q ß Multiplier

C, A ß 0, Count ß No. of bits of Q

Is

Q0 = 1

?

A ß A + M

Right Shift C, A, Q

Count ß Count - 1

Is

Count = 0

?

Stop Result in AQ

Yes

Yes

No

No

Fig. : Flowchart of Unsigned Binary Multiplication

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 5

Example: Multiply 15 X 11 using unsigned binary method

C A Q M Count Remarks

0 0000 1011 1111 4 Initialization

0

0

1111

0111

1011

1101

-

-

-

3

Add (A ß A + M)

Logical Right Shift C, A, Q

1

0

0110

1011

1101

0110

-

-

-

2

Add (A ß A + M)

Logical Right Shift C, A, Q

0 0101 1011 - 1 Logical Right Shift C, A, Q

1

0

0100

1010

1011

0101

-

-

-

0

Add (A ß A + M)

Logical Right Shift C, A, Q

Result = 1010 0101 = 2
7
 + 2

5
 + 2

2
 + 2

0
 = 165

Alternate Method of Unsigned Binary Multiplication

Start

X ß Multiplicand, Y ß Multiplier

Sum ß 0, Count ß No. of bits of Y

Is

Y0 = 1

?

Sum ß Sum + X

Left Shift X, Right

Shift Y

Count ß Count - 1

Is

Count = 0

?

Stop Result in Sum

Yes

Yes

No

No

Fig: Unsigned Binary Multiplication Alternate method

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 6

Algorithm:

Step 1: Clear the sum (accumulator A). Place the multiplicand in X and multiplier in Y.

Step 2: Test Y0; if it is 1, add content of X to the accumulator A.

Step 3: Logical Shift the content of X left one position and content of Y right one position.

Step 4: Check for completion; if not completed, go to step 2.

Example: Multiply 7 X 6

Sum X Y Count Remarks

000000 000111 110 3

Initialization

000000 001110 011 2

Left shift X, Right Shift Y

001110 011100 001 1

Sum ß Sum + X,

Left shift X, Right Shift Y

101010 111000 000 0

Sum ß Sum + X,

Left shift X, Right Shift Y

Result = 101010 = 2
5
 + 2

3
 + 2

1
 = 42

Signed Multiplication (Booth Algorithm) – 2’s Complement Multiplication

Multiplier and multiplicand are placed in Q and M register respectively. There is also one bit

register placed logically to the right of the least significant bit Q0 of the Q register and designated

as Q-1. The result of multiplication will appear in A and Q resister. A and Q-1 are initialized to

zero if two bits (Q0 and Q-1) are the same (11 or 00) then all the bits of A, Q and Q-1 registers are

shifted to the right 1 bit. If the two bits differ then the multiplicand is added to or subtracted from

the A register depending on weather the two bits are 01 or 10. Following the addition or

subtraction the arithmetic right shift occurs. When count reaches to zero, result resides into AQ

in the form of signed integer [-2
n-1

*an-1 + 2
n-2

*an-2 + …………… + 2
1
*a1 + 2

0
*a0].

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 7

Start

Initialize A ß 0, Q-1 ß 0,

M ß Multiplicand, Q ß Multiplier,

Count ß No. of bits of Q

Is

Q0Q-1

?

A ß A + M

Arithmetic Shift Right

A, Q, Q-1

Count ß Count - 1

Is

Count = 0

?

Stop Result in AQ

Yes

= 01

No

= 10

= 11

= 00

A ß A - M

Fig.: Flowchart of Signed Binary Numbers (using 2’s Complement, Booth Method)

Example: Multiply 9 X -3 = -27 using Booth Algorithm

+3 = 00011, -3 = 11101 (2’s complement of +3)

A Q Q-1 Add (M) Sub (M +1) Count Remarks

00000 11101 0 01001 10111 5 Initialization

10111

11011

11101

11110

0

1

-

-

-

-

-

4

Sub (A ß A - M) as Q0Q-1 = 10

Arithmetic Shift Right A, Q, Q-1

00100

00010

11110

01111

1

0

-

-

-

-

-

3

Add (A ß A + M) as Q0Q-1 = 01

Arithmetic Shift Right A, Q, Q-1

11001

11100

01111

10111

0

1

-

-

-

-

-

2

Sub (A ß A - M) as Q0Q-1 = 10

Arithmetic Shift Right A, Q, Q-1

11110 01011 1 - - 1 Arithmetic Shift Right A, Q, Q-1

as Q0Q-1 = 11

11111 00101 1 - - 0 Arithmetic Shift Right A, Q, Q-1

as Q0Q-1 = 11

Result in AQ = 11111 00101 = -2
9
+2

8
+2

7
+2

6
+2

5
+2

2
+2

0
 = -512+256+128+64+32+4+1 = -27

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 8

5.4 Division Algorithm

Division is somewhat more than multiplication but is based on the same general principles. The

operation involves repetitive shifting and addition or subtraction.

First, the bits of the dividend are examined from left to right, until the set of bits examined

represents a number greater than or equal to the divisor; this is referred to as the divisor being

able to divide the number. Until this event occurs, 0s are placed in the quotient from left to right.

When the event occurs, a 1 is placed in the quotient and the divisor is subtracted from the partial

dividend. The result is referred to as a partial remainder. The division follows a cyclic pattern.

At each cycle, additional bits from the dividend are appended to the partial remainder until the

result is greater than or equal to the divisor. The divisor is subtracted from this number to

produce a new partial remainder. The process continues until all the bits of the dividend are

exhausted.

An A0…………An-1 Q0…………Qn-1

N+1 Bit

Adder

0 M0…………Mn-1

Shift Left

Control Unit
Add / Subtract

Divisor

Fig.: Block Diagram of Division Operation

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 9

Restoring Division (Unsigned Binary Division)

Algorithm:

Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and counter to n

where n is the number of bits in the dividend.

Step 2: Shift A, Q left one binary position.

Step 3: Subtract M from A placing answer back in A. If sign of A is 1, set Q0 to zero and add M

back to A (restore A). If sign of A is 0, set Q0 to 1.

Step 4: Decrease counter; if counter > 0, repeat process from step 2 else stop the process. The

final remainder will be in A and quotient will be in Q.

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 10

Example: Divide 15 (1111) by 4 (0100)

A Q M M +1 Count Remarks

00000 1111 00100 11100 4 Initialization

00001

11101

00001

111□
111□

1110

-

-

-

-

-

-

-

-

3

Shift Left A, Q

Sub (A ß A – M)

Q0 ß 0, Add (Aß A + M)

00011

11111

00011

110□

110□

1100

-

-

-

-

-

-

-

-

2

Shift Left A, Q

Sub (A ß A – M)

Q0 ß 0, Add (Aß A + M)

00111

00011

00011

100□

100□

1001

-

-

-

-

-

-

-

-

1

Shift Left A, Q

Sub (A ß A – M)

Set Q0 ß 1

00111

00011

00011

001□

001□

0011

-

-

-

-

-

-

-

-

0

Shift Left A, Q

Sub (A ß A – M)

Set Q0 ß 1

Quotient in Q = 0011 = 3

Remainder in A = 00011 = 3

Non – Restoring Division (Signed Binary Division)

Algorithm

Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and count to

number of bits in dividend.

Step 2: Check sign of A;

If A < 0 i.e. bn-1 is 1

a. Shift A, Q left one binary position.

b. Add content of M to A and store back in A.

If A ≥ 0 i.e. bn-1 is 0

a. Shift A, Q left one binary position.

b. Subtract content of M to A and store back in A.

Step 3: If sign of A is 0, set Q0 to 1 else set Q0 to 0.

Step 4: Decrease counter. If counter > 0, repeat process from step 2 else go to step 5.

Step 5: If A ≥ 0 i.e. positive, content of A is remainder else add content of M to A to get the

remainder. The quotient will be in Q.

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 11

Start

Initialize: A ß 0, M ß Divisor,

Q ß Dividend, Count ß No. of bits of Q

Is

A < 0

?

Left Shift AQ

Count ß Count - 1

Is

Count > 0

?

Stop

Quotient in Q

Remainder in A

Yes

Yes

Yes

No
Left Shift AQ

A ß A + M A ß A - M

Is

A < 0

?

Q0 ß 0Q0 ß 1
YesNo

Is

A > 0

?

A ß A + M
No

No

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 12

Example: Divide 1110 (14) by 0011 (3) using non-restoring division.

A Q M M +1 Count Remarks

00000 1110 00011 11101 4 Initialization

00001

11110

11110

110□
110□

1100

-

-

-

-

-

-

-

-

3

Shift Left A, Q

Sub (A ß A – M)

Set Q0 to 0

11101

00000

00000

100□

100□

1001

-

-

-

-

-

-

-

-

2

Shift Left A, Q

Add (A ß A + M)

Set Q0 to 1

00001

11110

11110

001□

001□

0010

-

-

-

-

-

-

-

-

1

Shift Left A, Q

Sub (A ß A – M)

Set Q0 to 0

11100

11111

11111

010□

010□

0100

-

-

-

-

-

-

-

-

0

Shift Left A, Q

Add (A ß A + M)

Set Q0 to 0

00010 0100 - - - Add (A ß A + M)

Quotient in Q = 0011 = 3

Remainder in A = 00010 = 2

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 13

Floating Point Representation

The floating point representation of the number has two parts. The first part represents a signed

fixed point numbers called mantissa or significand. The second part designates the position of

the decimal (or binary) point and is called exponent. For example, the decimal no + 6132.789 is

represented in floating point with fraction and exponent as follows.

Fraction Exponent

+0.6132789 +04

This representation is equivalent to the scientific notation +0.6132789 × 10
+4

The floating point is always interpreted to represent a number in the following form ±M × R
±E

.

Only the mantissa M and the exponent E are physically represented in the register (including

their sign). The radix R and the radix point position of the mantissa are always assumed.

A floating point binary no is represented in similar manner except that it uses base 2 for the

exponent.

For example, the binary no +1001.11 is represented with 8 bit fraction and 0 bit exponent as

follows.

0.1001110 × 2
100

Fraction Exponent

01001110 000100

The fraction has zero in the leftmost position to denote positive. The floating point number is

equivalent to M × 2
E
 = +(0.1001110)2 × 2

+4

Floating Point Arithmetic

The basic operations for floating point arithmetic are

Floating point number Arithmetic Operations

X = Xs × B
XE

 X + Y = (Xs × B
XE-YE

+ Ys) × B
YE

Y = Ys × B
YE

 X - Y = (Xs × B
XE-YE

 - Ys) × B
YE

X * Y = (Xs × Ys) × B
XE+YE

X / Y = (Xs / Ys) × B
XE-YE

There are four basic operations for floating point arithmetic. For addition and subtraction, it is

necessary to ensure that both operands have the same exponent values. This may require shifting

the radix point on one of the operands to achieve alignment. Multiplication and division are

straighter forward.

A floating point operation may produce one of these conditions:

 Exponent Overflow: A positive exponent exceeds the maximum possible exponent value.

 Exponent Underflow: A negative exponent which is less than the minimum possible

value.

 Significand Overflow: The addition of two significands of the same sign may carry in a

carry out of the most significant bit.

 Significand underflow: In the process of aligning significands, digits may flow off the

right end of the significand.

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 14

Floating Point Addition and Subtraction

In floating point arithmetic, addition and subtraction are more complex than multiplication and

division. This is because of the need for alignment. There are four phases for the algorithm for

floating point addition and subtraction.

1. Check for zeros:

Because addition and subtraction are identical except for a sign change, the process

begins by changing the sign of the subtrahend if it is a subtraction operation. Next; if one

is zero, second is result.

2. Align the Significands:

Alignment may be achieved by shifting either the smaller number to the right (increasing

exponent) or shifting the large number to the left (decreasing exponent).

3. Addition or subtraction of the significands:

The aligned significands are then operated as required.

4. Normalization of the result:

Normalization consists of shifting significand digits left until the most significant bit is

nonzero.

Example: Addition

X = 0.10001 * 2
110

Y = 0.101 * 2
100

Since EY < EX, Adjust Y

 Y = 0.00101 * 2
100

 * 2
010

 = 0.00101 * 2
110

So, EZ = EX = EY = 110

Now, MZ = MX + MY = 0.10001 + 0.00101 = 0.10110

Hence, Z = MZ * 2
EZ

 = 0.10110 * 2
110

Example: Subtraction

X = 0.10001 * 2
110

Y = 0.101 * 2
100

Since EY < EX, Adjust Y

 Y = 0.00101 * 2
100

 * 2
010

 = 0.00101 * 2
110

So, EZ = EX = EY = 110

Now, MZ = MX - MY = 0.10001 - 0.00101 = 0.01100

Z = MZ * 2
EZ

 = 0.01100 * 2
110

 (Un-Normalized)

Hence, Z = 0.1100 * 2
110

 * 2
-001

 = 0.1100 * 2
101

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 15

Start

Check

the exponent

?

Adjust the Mantissa

MZ = MX ± MY

Is

½ ≤ MZ < 1

?

Stop

Yes

No

Adjust X such that:

EZ = EX = EY

Is

X == 0

?

Zß Y

Is

Y == 0

?

Zß X

Stop

Adjust Y such that:

EZ = EX = EY

EY < EXEX < EY

EY = EX

Form the floating

point number

Z = MZ * 2EZ

Post Normalize

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 16

Floating Point Multiplication

The multiplication can be subdivided into 4 parts.

1. Check for zeroes.

2. Add the exponents.

3. Multiply mantissa.

4. Normalize the product.

Example:
X = 0.101 * 2

110
 0.1001

Y = 0.1001 * 2
-010

 * 0.101

As we know, Z = X * Y = (MX * MY) * 2
(EX + EY)

1001

Z = (0.101 * 0.1001) * 2
(110-010)

0000*

 = 0.0101101 * 2
100

+1001**

 = 0.101101 * 2
011

 (Normalized) 101101 = 0.0101101

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 17

Floating Point Division

 The division algorithm can be subdivided into 5 parts

1. Check for zeroes.

2. Initial registers and evaluates the sign.

3. Align the dividend.

4. Subtract the exponent.

5. Divide the mantissa.

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 18

Example:

X = 0.101 * 2
110

Y = 0.1001 * 2
-010

As we know, Z = X / Y = (MX / MY) * 2
(EX – EY)

MX / MY = 0.101 / 0.1001 = (1/2 + 1/8) / (1/2 + 1/16) = 1.11 = 1.00011

 0.11 * 2 = 0.22  0

 0.22 * 2 = 0.44  0

 0.44 * 2 = 0.88  0

 0.88 * 2 = 1.76  1

 0.76 * 2 = 1.52  1

EX – EY = 110 + 010 = 1000

Now, Z = MZ * 2
EZ

 = 1.00011 * 2
1000

 = 0.100011 * 2
1001

5.5 Logical Operation

Gate Level Logical Components

Computer Organization and Architecture Chapter 5 : Computer Arithmetic

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 19

Composite Logic Gates

