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Chapter – 5 

Computer Arithmetic 
 

Integer Representation: (Fixed-point representation): 

An eight bit word can be represented the numbers from zero to 255 including 

00000000 = 0 

00000001 = 1 

- - - - - - - 

11111111 = 255 

In general if an n-bit sequence of binary digits an-1, an-2 …..a1, a0; is interpreted as unsigned 

integer A. 
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Sign magnitude representation: 

There are several alternative convention used to represent negative as well as positive integers, 

all of which involves treating the most significant (left most) bit in the word as sign bit. If the 

sign bit is 0, the number is +ve and if the sign bit is 1, the number is –ve. In n bit word the right 

most n-1 bit hold the magnitude of integer. 

For an example, 

+18 = 00010010 

- 18 = 10010010 (sign magnitude) 

The general case can be expressed as follows: 
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ai (Both for +ve and –ve) 

There are several drawbacks to sign-magnitude representation. One is that addition or subtraction 

requires consideration of both signs of number and their relative magnitude to carry out the 

required operation. Another drawback is that there are two representation of zero. For an 

example: 

+010 = 00000000 

-010 = 10000000 this is inconvenient. 

 

2’s complement representation: 

Like sign magnitude representation, 2’s complement representation uses the most significant bit 

as sign bit making it easy to test whether the integer is negative or positive. It differs from the 

use of sign magnitude representation in the way that the other bits are interpreted. For negation, 

take the Boolean complement (1’s complement) of each bit of corresponding positive number, 

and then add one to the resulting bit pattern viewed as unsigned integer. Consider n bit integer A 

in 2’s complement representation. If A is +ve then the sign bit an-1 is zero. The remaining bits 

represent the magnitude of the number. 
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The number zero is identified as +ve and therefore has zero sign bit and magnitude of all 0’s. We 

can see that the range of +ve integer that may be represented is from 0 (all the magnitude bits 

are zero) through 2
n-1

-1 (all of the magnitude bits are 1). 

Now for –ve number integer A, the sign bit an-1 is 1. The range of –ve integer that can be 

represented is from -1 to -2
n-1

 

2’s complement, A = -2
n-1 
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Defines the twos complement of representation of both positive and negative number. 

For an example: 

+18 = 00010010 

1’s complement = 11101101 

2’s complement = 11101110 = -18 

 

5.1 Addition Algorithm 

5.2       Subtraction Algorithm 

 

1001 = -7  1100 = -4  0011 = 3    

0101 = +5  0100 = +4  0100= 4 

1110 =-2  10000 = 0  0111= 7 
(a) (-7)+(+5)   (b) (-4)+(4)   (c) (+3)+(+4) 

 

1100 = -4  0101 =5  1001 = -7 

1111 = -1  0100 =4  1010 = -6 

11011 = -5  1001=overflow 10011 = overflow 
(d) (-4)+(-1)   (e) (+5)+(+4)   (f) (-7)+(-6) 

 

The first four examples illustrate successful operation if the result of the operation is +ve then we 

get +ve number in ordinary binary notation. If the result of the operation is –ve we get negative 

number in twos complement form. Note that in some instants there is carry bit beyond the end of 

what which is ignored. On any addition the result may larger then can be held in word size being 

use. This condition is called over flow. When overflow occur ALU must signal this fact so that 

no attempt is made to use the result. To detect overflow the following rule observed. If two 

numbers are added, and they are both +ve or both –ve; then overflow occurs if and only if the 

result has the opposite sign. 

 

The data path and hardware elements needed to accomplish addition and subtraction is shown in 

figure below. The central element is binary adder, which is presented two numbers for addition 

and produces a sum and an overflow indication. The binary adder treats the two numbers as 

unsigned integers. For addition, the two numbers are presented to the adder from two registers A 

and B. The result may be stored in one of these registers or in the third. The overflow indication 

is stored in a 1-bit overflow flag V (where 1 = overflow and 0 = no overflow). For subtraction, 

the subtrahend (B register) is passed through a 2’s complement unit so that its 2’s complement is 

presented to the adder (a – b = a + (-b)).  
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B Register A Register

Complement

Switch

n bit Adder

V CSZ

Check for Zero

XOR
B7

B8

B7

n bit/

 
Fig: Block diagram of hardware for addition / subtraction 

 

5.3          Multiplication Algorithm 

The multiplier and multiplicand bits are loaded into two registers Q and M. A third register A is 

initially set to zero. C is the 1-bit register which holds the carry bit resulting from addition. Now, 

the control logic reads the bits of the multiplier one at a time. If Q0 is 1, the multiplicand is added 

to the register A and is stored back in register A with C bit used for carry. Then all the bits of 

CAQ are shifted to the right 1 bit so that C bit goes to An-1, A0 goes to Qn-1 and Q0 is lost. If Q0 is 

0, no addition is performed just do the shift. The process is repeated for each bit of the original 

multiplier. The resulting 2n bit product is contained in the QA register. 

 
Fig: Block diagram of multiplication 
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There are three types of operation for multiplication. 

 It should be determined whether a multiplier bit is 1 or 0 so that it can designate the 

partial product. If the multiplier bit is 0, the partial product is zero; if the multiplier bit is 

1, the multiplicand is partial product. 

 It should shift partial product. 

 It should add partial product. 

 

Unsigned Binary Multiplication 

1011 Multiplicand 11 

        X 1101 Multiplier 13 

1011      

          0000         Partial Product 

        1011   

   + 1011                 

    10001111 Product (143) 

 

Start

M ß Multiplicand, Q ß Multiplier

C, A ß 0, Count ß No. of bits of Q

Is

Q0 = 1

?

A ß A + M

Right Shift C, A, Q

Count ß Count - 1

Is

Count = 0

?

Stop Result in AQ

Yes

Yes

No

No

 
Fig. : Flowchart of Unsigned Binary Multiplication 
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Example: Multiply 15 X 11 using unsigned binary method 

C A Q M Count Remarks 

0 0000 1011 1111 4 Initialization 

 

0 

0 

1111 

0111 

1011 

1101 

- 

- 

- 

3 

Add (A ß A + M) 

Logical Right Shift C, A, Q 

 

1 

0 

0110 

1011 

1101 

0110 

- 

- 

- 

2 

Add (A ß A + M) 

Logical Right Shift C, A, Q 

 

0 0101 1011 - 1 Logical Right Shift C, A, Q 

 

1 

0 

0100 

1010 

1011 

0101 

- 

- 

- 

0 

Add (A ß A + M) 

Logical Right Shift C, A, Q 

 

 

Result = 1010 0101 = 2
7
 + 2

5
 + 2

2
 + 2

0
 = 165 

 

Alternate Method of Unsigned Binary Multiplication 

Start

X ß Multiplicand, Y ß Multiplier

Sum ß 0, Count ß No. of bits of Y

Is

Y0 = 1

?

Sum ß Sum + X

Left Shift X, Right 

Shift Y

Count ß Count - 1

Is

Count = 0

?

Stop Result in Sum

Yes

Yes

No

No

 
Fig: Unsigned Binary Multiplication Alternate method 
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Algorithm: 

Step 1: Clear the sum (accumulator A). Place the multiplicand in X and multiplier in Y. 

Step 2: Test Y0; if it is 1, add content of X to the accumulator A. 

Step 3: Logical Shift the content of X left one position and content of Y right one position. 

Step 4: Check for completion; if not completed, go to step 2. 

 

Example: Multiply 7 X 6 

Sum X Y Count Remarks 

000000 000111 110 3 

 

Initialization 

000000 001110 011 2 

 

Left shift X, Right Shift Y 

001110 011100 001 1 

 

Sum ß Sum + X, 

Left shift X, Right Shift Y 

101010 111000 000 0 

 

Sum ß Sum + X, 

Left shift X, Right Shift Y 

 

Result = 101010 = 2
5
 + 2

3
 + 2

1
 = 42 

 

Signed Multiplication (Booth Algorithm) – 2’s Complement Multiplication 

Multiplier and multiplicand are placed in Q and M register respectively. There is also one bit 

register placed logically to the right of the least significant bit Q0 of the Q register and designated 

as Q-1. The result of multiplication will appear in A and Q resister. A and Q-1 are initialized to 

zero if two bits (Q0 and Q-1) are the same (11 or 00) then all the bits of A, Q and Q-1 registers are 

shifted to the right 1 bit. If the two bits differ then the multiplicand is added to or subtracted from 

the A register depending on weather the two bits are 01 or 10. Following the addition or 

subtraction the arithmetic right shift occurs. When count reaches to zero, result resides into AQ 

in the form of signed integer [-2
n-1

*an-1 + 2
n-2

*an-2 + …………… + 2
1
*a1 + 2

0
*a0]. 
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Start

Initialize A ß 0, Q-1 ß 0,                    

M ß Multiplicand, Q ß Multiplier, 

Count ß No. of bits of Q

Is

Q0Q-1

?

A ß A + M

Arithmetic Shift Right

A, Q, Q-1

Count ß Count - 1

Is

Count = 0

?

Stop Result in AQ

Yes

= 01

No

= 10

= 11

= 00

A ß A - M

 
Fig.: Flowchart of Signed Binary Numbers (using 2’s Complement, Booth Method) 

 

Example: Multiply 9 X -3 = -27 using Booth Algorithm 

+3 = 00011, -3 = 11101 (2’s complement of +3) 

A Q Q-1 Add (M) Sub ( M +1) Count Remarks 

00000 11101 0 01001 10111 5 Initialization 

 

10111 

11011 

11101 

11110 

0 

1 

- 

- 

- 

- 

- 

4 

Sub (A ß A - M) as Q0Q-1 = 10 

Arithmetic Shift Right A, Q, Q-1 

 

00100 

00010 

11110 

01111 

1 

0 

- 

- 

- 

- 

- 

3 

Add (A ß A + M) as Q0Q-1 = 01 

Arithmetic Shift Right A, Q, Q-1 

 

11001 

11100 

01111 

10111 

0 

1 

- 

- 

- 

- 

- 

2 

Sub (A ß A - M) as Q0Q-1 = 10 

Arithmetic Shift Right A, Q, Q-1 

 

11110 01011 1 - - 1 Arithmetic Shift Right A, Q, Q-1 

as Q0Q-1 = 11 

11111 00101 1 - - 0 Arithmetic Shift Right A, Q, Q-1 

as Q0Q-1 = 11 

Result in AQ = 11111 00101 = -2
9
+2

8
+2

7
+2

6
+2

5
+2

2
+2

0
 = -512+256+128+64+32+4+1 = -27 

 



Computer Organization and Architecture                                       Chapter 5 : Computer Arithmetic 
 

Compiled By: Er. Hari Aryal [haryal4@gmail.com]                                                     Reference: W. Stallings |  8 

 

5.4              Division Algorithm 

Division is somewhat more than multiplication but is based on the same general principles. The 

operation involves repetitive shifting and addition or subtraction. 

 

First, the bits of the dividend are examined from left to right, until the set of bits examined 

represents a number greater than or equal to the divisor; this is referred to as the divisor being 

able to divide the number. Until this event occurs, 0s are placed in the quotient from left to right. 

When the event occurs, a 1 is placed in the quotient and the divisor is subtracted from the partial 

dividend. The result is referred to as a partial remainder. The division follows a cyclic pattern. 

At each cycle, additional bits from the dividend are appended to the partial remainder until the 

result is greater than or equal to the divisor. The divisor is subtracted from this number to 

produce a new partial remainder. The process continues until all the bits of the dividend are 

exhausted. 

 

An A0…………An-1 Q0…………Qn-1

N+1 Bit 

Adder

0 M0…………Mn-1

Shift Left

Control Unit
Add / Subtract

Divisor
 

Fig.: Block Diagram of Division Operation 
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Restoring Division (Unsigned Binary Division) 

 

 
Algorithm: 

Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and counter to n 

where n is the number of bits in the dividend. 

Step 2: Shift A, Q left one binary position. 

Step 3: Subtract M from A placing answer back in A. If sign of A is 1, set Q0 to zero and add M 

back to A (restore A). If sign of A is 0, set Q0 to 1. 

Step 4: Decrease counter;  if counter > 0, repeat process from step 2 else stop the process. The 

final remainder will be in A and quotient will be in Q. 
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Example: Divide 15 (1111) by 4 (0100) 

A Q M M +1 Count Remarks 

00000 1111 00100 11100 4 Initialization 

 

00001 

11101 

00001 

111□ 
111□ 

1110 

- 

- 

- 

- 

- 

- 

- 

- 

3 

 

Shift Left A, Q 

Sub (A ß A – M) 

Q0 ß 0, Add (Aß A + M) 

00011 

11111 

00011 

 

110□ 

110□ 

1100 

- 

- 

- 

- 

- 

- 

- 

- 

2 

 

Shift Left A, Q 

Sub (A ß A – M) 

Q0 ß 0, Add (Aß A + M) 

00111 

00011 

00011 

100□ 

100□ 

1001 

- 

- 

- 

- 

- 

- 

- 

- 

1 

Shift Left A, Q 

Sub (A ß A – M) 

Set Q0 ß 1 

 

00111 

00011 

00011 

001□ 

001□ 

0011 

- 

- 

- 

- 

- 

- 

- 

- 

0 

Shift Left A, Q 

Sub (A ß A – M) 

Set Q0 ß 1 

Quotient in Q = 0011 = 3 

Remainder in A = 00011 = 3 

 

Non – Restoring Division (Signed Binary Division) 

Algorithm 

Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and count to 

number of bits in dividend. 

Step 2: Check sign of A;  

If A < 0 i.e. bn-1 is 1 

a. Shift A, Q left one binary position. 

b. Add content of M to A and store back in A. 

If A ≥ 0 i.e. bn-1 is 0 

a. Shift A, Q left one binary position. 

b. Subtract content of M to A and store back in A. 

Step 3: If sign of A is 0, set Q0 to 1 else set Q0 to 0. 

Step 4: Decrease counter. If counter > 0, repeat process from step 2 else go to step 5. 

Step 5: If A ≥ 0 i.e. positive, content of A is remainder else add content of M to A to get the 

remainder. The quotient will be in Q. 
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Start

Initialize: A ß 0, M ß Divisor, 

Q ß Dividend, Count ß No. of bits of Q

Is

A < 0

?

Left Shift AQ

Count ß Count - 1

Is

Count > 0

?

Stop

Quotient in Q

Remainder in A

Yes

Yes

Yes

No
Left Shift AQ

A ß A + M A ß A - M

Is

A < 0

?

Q0 ß 0Q0 ß 1
YesNo

Is

A > 0

?

A ß A + M
No

No
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Example: Divide 1110 (14) by 0011 (3) using non-restoring division. 

A Q M M +1 Count Remarks 

00000 1110 00011 11101 4 Initialization 

 

00001 

11110 

11110 

110□ 
110□ 

1100 

- 

- 

- 

- 

- 

- 

- 

- 

3 

 

Shift Left A, Q 

Sub (A ß A – M) 

Set Q0 to 0 

11101 

00000 

00000 

 

100□ 

100□ 

1001 

- 

- 

- 

- 

- 

- 

- 

- 

2 

 

Shift Left A, Q 

Add (A ß A + M) 

Set Q0 to 1 

00001 

11110 

11110 

 

001□ 

001□ 

0010 

- 

- 

- 

- 

- 

- 

- 

- 

1 

Shift Left A, Q 

Sub (A ß A – M) 

Set Q0 to 0 

11100 

11111 

11111 

010□ 

010□ 

0100 

- 

- 

- 

- 

- 

- 

- 

- 

0 

Shift Left A, Q 

Add (A ß A + M) 

Set Q0 to 0 

00010 0100 - - - Add (A ß A + M) 

Quotient in Q = 0011 = 3 

Remainder in A = 00010 = 2  
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Floating Point Representation 

The floating point representation of the number has two parts. The first part represents a signed 

fixed point numbers called mantissa or significand. The second part designates the position of 

the decimal (or binary) point and is called exponent. For example, the decimal no + 6132.789 is 

represented in floating point with fraction and exponent as follows. 

Fraction  Exponent 

+0.6132789   +04 

This representation is equivalent to the scientific notation +0.6132789 × 10
+4

 

 

The floating point is always interpreted to represent a number in the following form ±M × R
±E

. 

Only the mantissa M and the exponent E are physically represented in the register (including 

their sign). The radix R and the radix point position of the mantissa are always assumed. 

 

A floating point binary no is represented in similar manner except that it uses base 2 for the 

exponent. 

For example, the binary no +1001.11 is represented with 8 bit fraction and 0 bit exponent as 

follows. 

0.1001110 × 2
100

 

Fraction   Exponent 

01001110   000100 

The fraction has zero in the leftmost position to denote positive. The floating point number is 

equivalent to M × 2
E
 = +(0.1001110)2 × 2

+4
 

 

Floating Point Arithmetic 

The basic operations for floating point arithmetic are 

Floating point number  Arithmetic Operations 

X = Xs × B
XE

    X + Y = (Xs × B
XE-YE 

+ Ys) × B
YE

 

Y = Ys × B
YE

    X - Y = (Xs × B
XE-YE

 - Ys) × B
YE

 

X * Y = (Xs × Ys) × B
XE+YE

 

X / Y = (Xs / Ys) × B
XE-YE

 

 

There are four basic operations for floating point arithmetic. For addition and subtraction, it is 

necessary to ensure that both operands have the same exponent values. This may require shifting 

the radix point on one of the operands to achieve alignment. Multiplication and division are 

straighter forward. 

A floating point operation may produce one of these conditions: 

 Exponent Overflow: A positive exponent exceeds the maximum possible exponent value. 

 Exponent Underflow: A negative exponent which is less than the minimum possible 

value. 

 Significand Overflow: The addition of two significands of the same sign may carry in a 

carry out of the most significant bit. 

 Significand underflow: In the process of aligning significands, digits may flow off the 

right end of the significand. 
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Floating Point Addition and Subtraction 

In floating point arithmetic, addition and subtraction are more complex than multiplication and 

division. This is because of the need for alignment. There are four phases for the algorithm for 

floating point addition and subtraction. 

1. Check for zeros: 

Because addition and subtraction are identical except for a sign change, the process 

begins by changing the sign of the subtrahend if it is a subtraction operation. Next; if one 

is zero, second is result. 

2. Align the Significands: 

Alignment may be achieved by shifting either the smaller number to the right (increasing 

exponent) or shifting the large number to the left (decreasing exponent). 

3. Addition or subtraction of the significands: 

The aligned significands are then operated as required. 

4. Normalization of the result: 

Normalization consists of shifting significand digits left until the most significant bit is 

nonzero. 

 

Example: Addition 

X = 0.10001 * 2
110

 

Y = 0.101 * 2
100

 

Since EY < EX, Adjust Y 

 Y = 0.00101 * 2
100

 * 2
010

 = 0.00101 * 2
110

 

So, EZ = EX = EY = 110 

Now, MZ = MX + MY = 0.10001 + 0.00101 = 0.10110 

Hence, Z = MZ * 2
EZ

 = 0.10110 * 2
110

 

 

Example: Subtraction 

X = 0.10001 * 2
110

 

Y = 0.101 * 2
100

 

Since EY < EX, Adjust Y 

 Y = 0.00101 * 2
100

 * 2
010

 = 0.00101 * 2
110

 

So, EZ = EX = EY = 110 

Now, MZ = MX - MY = 0.10001 - 0.00101 = 0.01100 

Z = MZ * 2
EZ

 = 0.01100 * 2
110

 (Un-Normalized) 

Hence, Z = 0.1100 * 2
110

 * 2
-001

 = 0.1100 * 2
101
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Start

Check 

the exponent

?

Adjust the Mantissa

MZ = MX ± MY

Is

½ ≤ MZ < 1

?

Stop

Yes

No

Adjust X such that: 

EZ = EX = EY

Is 

X == 0

?

Zß Y

Is 

Y == 0

?

Zß X

Stop

Adjust Y such that: 

EZ = EX = EY

EY < EXEX < EY

EY = EX

Form the floating 

point number

Z = MZ * 2EZ

Post Normalize
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Floating Point Multiplication 

The multiplication can be subdivided into 4 parts. 

1. Check for zeroes. 

2. Add the exponents. 

3. Multiply mantissa. 

4. Normalize the product. 

 
Example:  
X = 0.101 * 2

110 
                                                                                            0.1001 

Y = 0.1001 * 2
-010

                                                                                        *  0.101  

As we know, Z = X * Y = (MX * MY) * 2
(EX + EY)   

1001 

Z = (0.101 * 0.1001) * 2
(110-010) 

0000* 

    = 0.0101101 * 2
100                                                                                                                            

+1001**
 
 

    = 0.101101 * 2
011

 (Normalized)                                                                 101101 = 0.0101101 
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Floating Point Division 

 The division algorithm can be subdivided into 5 parts 

1. Check for zeroes. 

2. Initial registers and evaluates the sign. 

3. Align the dividend. 

4. Subtract the exponent. 

5. Divide the mantissa. 
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Example: 

X = 0.101 * 2
110

 

Y = 0.1001 * 2
-010

 

As we know, Z = X / Y = (MX / MY) * 2
(EX – EY)

 

MX / MY = 0.101 / 0.1001 = (1/2 + 1/8) / (1/2 + 1/16) = 1.11 = 1.00011 

 0.11 * 2 = 0.22  0 

 0.22 * 2 = 0.44  0 

 0.44 * 2 = 0.88  0 

 0.88 * 2 = 1.76  1 

 0.76 * 2 = 1.52  1 

EX – EY = 110 + 010 = 1000 

Now, Z = MZ * 2
EZ

 = 1.00011 * 2
1000

 = 0.100011 * 2
1001

 

 

5.5               Logical Operation 

 

Gate Level Logical Components 
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Composite Logic Gates 

 
 
 


